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Luttinger's Model and the Matter of Dispersion
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In the Luttinger model, right-hand-going particles moving at a constant velocity
c in 1D maintain a constant distance apart. Therefore their interaction energy
should be a trivial constant of the motion whereas, in fact it is not. This inter-
action affects the dispersion of all the elementary excitations in the model, hence
the dynamics and thermodynamics. (Identical remarks hold for the left-hand-
goers.) The present paper explores the meaning of this interesting facet of
Luttinger's model.
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Joaquin (``Quin'') M. Luttinger was a master at distilling complex
problems that are the daily fare of a theoretical physicist, reducing them to
conceptually neat formulations that could be used and re-used by others.
One of many such examples that have stood the test of time informs this
article. Later named the ``Luttinger liquid'' to distinguish it from Landau's
``Fermi liquid,'' this model of interacting fermions in one spatial dimension
(1D) was originally a purely formal construct, an extension of Thirring's
toy model(1) to the many-body problem. Yet it appears to yield the univer-
sal framework (a sort of ``law of corresponding states,'') for all kinds of
systems of interacting particles��not just fermions��in 1D. Its simplicity
also allowed it to resolve divers experimental situations in higher-dimen-
sional electron physics, ranging from the solution to the Kondo impurity
problem in 3D metal physics, to the classification of the edge states in the
2D quantum Hall effect.

After a brief review of the model and its history, we shall examine a
special feature of this model relating to the dispersion of the elementary
boson particles, e(q).
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Luttinger's article(2) appeared in print just at the time Elliott H. Lieb
and I were planning a book on one-dimensional physics, later published
in 1966 by Academic Press under the title Mathematical Physics in One
Dimension. But before including such a novel theory in our collection we
undertook to understand it thoroughly. Our study of what initially seemed
a paradoxical semi-relativistic model of interacting spinless electrons in 1D
did lead us to construct something new and unexpected: a field-theoretic
version of the original theory that could still be solved in closed form
without any of the original paradoxes, via a transformation later to become
known as ``bosonization.''

Yet it was with some trepidation that I brought our manuscript to
Professor Luttinger's office in Columbia University, fearful that some
hidden vice might invalidate our version of his model. I need not have
worried; within a few hours he had duplicated our calculations and in a
characteristically generous manner, telephoned to congratulate Elliott and
me. Thus expeditiously refereed, our paper(3) was published shortly thereafter.
Ever since that time, literally hundreds of researchers have become equally
bemused by the classic simplicity of Luttinger's model, and in thousands of
published works have sought to apply it, to extend it and, less successfully,
to generalize it.(4)

The present work deals with just one aspect of Luttinger's model as he
originally proposed it, (2) viz. his artful neglect of any interactions of right-
hand-going (rhg) particles with one another H$=�i{i $ U(x i&xi $) and, by
symmetry, of left-hand-goers (lhg) with one another, H$y . Recall his original
Hamiltonian:

H=
�c
i \:

i

���xi&:
j

���y j++:
i

:
j

V(xi& yj ) (1)

All rhg particles move at the same speed, +c, hence each of N(N&1)�2
separations xi&xi $ is a constant of the motion. H$=H$x+H$y is itself a
constant of the motion, although an uninteresting one at that. (It is simple
enough to verify that [H$, H]#0.) Too many constants of the motion
gives rise to some unease; is the model over- or underconstrained? Are the
``constants'' not, in fact, variables? Luttinger had intuitively determined
that the quickest way to eliminate the ambiguities was to simply choose
U#0 in H$.

In what follows I shall show that, in the boson field theory which best
expresses the physical content of the Luttinger model, H$ does not com-
mute with H and therefore there are no extra constants of the motion. The
inclusion of H$ merely modifies the dispersion of the elementary excitations
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and as such helps to determine the dynamics and thermodynamics of the
model and of its constituent quasiparticles.

For simplicity in the exposition, let us first consider just the rhg particles
and their mutual interactions, i.e.: Hx=(�c�i) �i ���xi+�i �j{i U(xi&xj ).
Introducing fermion creation�annihilation operators c+ and c, this
becomes:

Hx=�c :
all k

kc+
k ck+

1
L

:
q>0

uq :\q \&q : (2)

where : } } } : indicates normal ordering, L is the size of the system, uq is the
Fourier transform of U(x) (assumed real) and \q=�k c+

k+q ck is the fer-
mion density operator. A first, nontrivial, step consists of filling the Fermi
sea while conserving momentum: ck � ak for k>0, and ck � b+

&k for k<0.
In addition to some constant ``vacuum energy'' terms (of little or no interest)
this transformation yields the following Hamiltonian governing the dynam-
ical degrees of freedom:

Hx=�c :
k>0

k(a+
k ak+b+

k bk)+
1
L

:
q>0

uq :\q \&q : (3)

where now, assuming q>0,

\q = :
&q

k=&�

b&(k+q) b+
&k+ :

0

k=&q

a+
k+qb+

&k+ :
�

k=0

a+
k+qak , and

\&q= :
&q

k=&�

b&k b+
&(k+q)+ :

0

k=&q

b&k ak+q+ :
�

k=0

a+
k ak+q (4)

We now identify the algebra that enables this model to be brought into
diagonal form in terms of its boson-like elementary excitations exclusively,
by setting \q=- qL�2? :+

q (for q>0) and for its Hermitian conjugate,

\&q=- qL�2? :q . By direct calculations using (4) one finds that the only
nonvanishing, nontrivial commutator is [:q , :+

q$ ]=$q, q$ , hence that the :'s
are ordinary bosons. By checking that [\&q , �c �k>0 k(a+

k ak+b+
k bk)]=

�cq\&q we establish that :q is a lowering operator for the entire motional
energy term, i.e., that the operator in Eq. (3) can be expressed in terms of
these bosons alone.

Hx= :
q>0

e(q) :+
q :q , with e(q)=�c |q| (1+2?uq ��c) (5)
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For the lhg particles, a similar procedure yields Hy virtually identical to the
above, except that the index q<0. Without loss of generality we assume
u&q=u+q , therefore e(&q)=e(q). Combining the two, introducing &q

(also taken to be real) as the Fourier transform of V(x& y) and again
omitting irrelevant constants, we obtain for the full Hamiltonian, including
interactions, i.e., the reformulated Eq. (1) cum H$:

H= :
all q

e(q) :+
q :q+2? :

q>0

q&q(:+
q :+

&q+:&q:q) (6)

The final diagonalization of H is carried out separately in each q-sector
for essentially arbitrary e(q) and &q . After an appropriate unitary transfor-
mation the final result is,

H= :
all q

|(q) :+
q :q , where |(q)=�c |q| - (1+2?uq ��c)2&(2?&q��c)2

(7)

to within some additive constants. Which finally brings us to the point of
this paper, the nature of e(q) and of |(q).

The Luttinger choice is U=0, hence e=�c |q|. If instead one chooses the
delta function potential U(x)= g$(x) the result is e=�c |q| (1+2?g��c),
a renormalization of c. All other choices lead to nontrivial dispersion e(q)
for the rhg excitations, prior to their scattering off the lhg particles.

However, for identical particles there is only one ``natural'' choice:
U=V. Hence by Eq. (7),

|(q)=�c |q| - 1+4?uq ��c (8)

This indicates an instability (absence of a ground state) only in the case of
excessively attractive potentials. For a plasma, defined by the repulsive
Coulomb potential uq=&q B e2�q2, Eqs. (7) and (8) result in a stable
spectrum with a gap. (By contrast, if we set U=0 we would find | becoming
imaginary for any strong potential V(x& y)��whether attractive or repulsive��
including the aforementioned Coulomb potential and regardless of its sign.)

In conclusion, the potential energy of a train of particles moving in the
same direction at a uniform speed would seem to be a constant dictated by
initial conditions and incapable of affecting the speed of the particles. Yet
in the bosonized version of Luttinger's model, (3, 4) this interaction energy,
in conjunction with the uncertainty principle and certain other mysterious
features of quantum field theory, does significantly affect both the speed
and the dispersion of the train of particles e( p) and ultimately the spectrum
of the elementary excitations |( p) as well.
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